
Representations of Uq(SO(5)) and non-minimal q-deformation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 3701

(http://iopscience.iop.org/0305-4470/28/13/014)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A. Math. Gen. 28 (1995) 3701-3708. Printed in the UK 
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Abstract. Representations of SO(5)  can be conmcted on bases such that either the Chevalley 
triplet (el. fi. kl) or (ez, fi, h2) has the standard SU(2)  matrix elemenm. The other triplet 
in each case has a more complicated action. The qdeformation of such representations p m t  
s m g  differences. In one case a non-minimal deformation is found to be essential. This is 
explained and illustrated below. Broader interests of a parallel use of the two bases are pointed 
out. 

The q-deformation of representations of non-simply laced Lie algebras (with roots of unequal 
length) present special problems. This is illustrated by comparing, for particular cases, the 
respective q-deformations of irreducible representations of SO(5) in two bases. Imposing 
the standard SU(2) representations for the triplets of Chevalley generators associated to the 
shorter and the longer root of SO(5) by turn lead to surprisingly different consequences 
conceming q-deformation. Irreducible representations of SO(5) are characterized by two 
invariant parametas nl and nz (nl > nz, both integer or half-integer). In this paper we will 
consider only the cases 

and 
(i) n2 = 0 

(ii) n2 = nl. 
Up to now only for these two cases are the solutions complete. But even within such 

restrictions remarkable features arise. For nz = nl one encounters an example (defined 
below) of non-minimal q-deformation which is our main result here. The case n2 = 0, needing 
essentially minimal deformation serves as acontrast: By minimalq-deformation we mean [l] 
introduction of q-brackets for each factor in the classical matrix elements of the Chevalley 
generatorsactingonasnitablyparametrizedsetofbasis states. Non-minimalmeans adeparture 
from this involvingmore subtle and complicated qdeformations of some factors giving back 
again, of course, the same classical limit. Thus, defining [XI, = ( q p "  - q - P " ) / ( q P  - 4-P). 
for any classical factor x the q-deformation. 

x -+ [xlp 
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is minimal, while 

x -+ [XI] , ,  - [x&; with x =XI - xz 
is an example of non-minimal deformation. The significances of these definitions will be more 
explicit after the examples to follow. 

The Chevdky generators consist of two iripIets (et, fi , hl), (ez, f2, hz) corresponding 
to the roots 1 and 2 respectively. The standard Drinfeld-Jimbo construction for Y(SG(5)) 
is, with commuting Cartan generators q*", qaz, 

The coproducts, munits  and antipodes are the standard ones. 
For subsequent, convenient use we~define also 

I ( K - M )  - 12hZ 4 - -4  q*M = q*hi 

q*M? - * $ ( K - M )  = *h2 - 4  4 
*f(K+M) - +.(ht+hd, q+t" = q - q  

The second-order Casimir operator is [l] 

(3) 
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Though we will need in the following only the restricted cases mentioned before we 
state here the general result that on the space of states spanning the irreducible representation 
(nl, na) 

where 1 is the identity. (For n2 = 0, A ,  nl this reduces to the results in [I].) 

follows: 

Basisl .  Let 

Our aim is to compare two bases for irreducible representations (nl, nz) defined as 

q*‘lj m k 1 >=q*mlj m k 1 > 
q*Klj m k E >=q“lj m k l  > 
ellj m k 1 >= ( [ j  - ml [ j  + m + 1])‘/21j m + 1 k 1 > 
ezlj m k I >= 

( [ j  - m + l l [ j  - m + 2J)’/’E a ( j ,  k ,  I ,  1’)lj + 1 m - I k + 1 1’ > 

+ ( [ j + m l [ j + m - 1 1 ) ” 2 ~  b(j,k,l,l’)lj- l m - l k + l l ’ >  

+ ( [ j + m l [ j - m + 1 ] ) ’ / 2 ~  c ( j , k , l , l ’ ) l jm- l  k + l 1 ’ > .  (6) 

We impose the Hermitian conjugacy fi = et and consider (for generic 4 )  only real matrix 
elements. Hence the matrices realizing er and fi in the space of the representation will be 
related by transposition. 

The domains of the indices have been obtained. The patterns of multiplicities are subtle. 
They are presented below without the derivations. 

(i) For (nl ,  n2) integers 

I‘ 

I’ 

I’ 

j = O ,  1 ,..., n 1 - I ,  n1 
m = - j ,  - j +  1, ..., j - 1 ,  j 
k = - l ,  - 1 + 2 , . . . ,  1 -2 ,  1 
1 = 0 ,  1 ,  2, ... 
j + 1 = nl - nz, nl -nz + 1 , .  . . , nl +nz 
j - 1 - ;(I - (-1)m+m-j-I )= -nl+ nz, -nl +n2 + 2 , .  . . , nl -nz. (7) 

(When comparing with.(2.14) of [ l ]  note that when nl = nz, 1 = j ,  j - 1 for j > 0 and 
1 = 0 for j = 0.) 

(ii) For (n1, nz) half-integers 
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The domains of k and 1 were obtained by diagonalizing the 545 matrix of Gelfand-Zetlin 
[2], for low numerical values of nl and nz. by using MATHEMATICA. ?he general expressions 
extracted from them were tested again a posteriori. At first the domains of k and E came 
out in a complicated form. Then it was noticed that appropriately combining j and 1 (as in 
(7) and (8)) rectangular lattices can obtained as shown. 

It can be shown that (7) and (8) lead (for q = 1 and generic q )  to the same dimensions 
as the Gelfand-Zetlin construction [21 for S0(5 ) ,  namely 

(9) 

Up to now the‘ solutions for the reduced manix elements a, b, c satisfying all the 

1 g(2n2+ 1)(2n1 +3)(n1 +n2+2)(n1 - n 2 +  1). 

necessary algebraic consaaints have been obtained [ I ]  for the cases 

1 
n2 =O, 2, nl 

when there is no multiplicity due to I and one can consider states labelled I j m k >. For 
comparison with the case to follow we reproduce here, briefly, the results for n2 = 0 and 
nl = nz (for nz = 5 .  see [l]). I 

To start with, consider only generic q (real, positive). For n2 = 0, nl = n 

where 

j=O,1.2 ,..., n 

k = n -  j , n -  j - 2  ...., - (n-  j - z ) , - ( n - j )  

m = j ,  j - 1, ..i, -(j - I), -j. 

The dimension of the representation is now 

For n2 = n1 = n (integer or half-integer) 
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where 

j = n , n  - 1 , .  .. ,O (1f2) 

k = j ,  j - 1, . . . , - ( j  - l) ,  - j  

m = j ,  j - 1, ..., - ( j  - l), - j .  

The dimension is 

(13) 

Apart from the limiting values of n2 mentioned (the lowest 0 and 1 and the highest 
n l )  not even the classical representations have yet been obtained for this basis. (See the 
detailed discussion and comparison of the situation with that in the Gelfand-Etlin basis [2] 
given in [l].) But for the nz values mentioned above setting q = 1 and comparing with the 
generic q-case one sees essentially an example of minimal q-deformation. The only effect 
of unequal roots is the appearance of [xIz brackets along with the [XI. 

Ensis 2 .  Consider now the following basis states (E  = f l ,  E' = hl): 

1 s (n  + 1)(2n + I ) ( h  + 3). 

q+M2~ jz  mz j a  m4 >= q+"l jz mz j4 m4 > 
q"1 jz mz j4 m4 >= q"I jz  m2 j4 m4 > 
ezljz mz j4 m4 >= ( t j ~  - mzlz[jz + m2 + 112)"~1 j z  mz + 1 j4 m4 

el [ j z  mz j4 m4 >= 

c(,,,,)(jz. jh, m4) 1j2 + f m2 - 4 j4 + f m4 + 1 > . 

( [ j z  - E mz + %W2 x 
L, <' 

(14) 

The matrix for 3 is again given by transposing the one for ej. 
The domain of the indices (again for generic q )  are 

m z = - j ~ ,  - j 2 + 1 , . . . ,  j z - 1 ,  jz  

m 4 = - j 4 ,  - j 4 + 1 , . . . ,  j 4 - 1 .  j4 

such that 

j z + j d = n z ,  nz+1,  ..., n1 

j2 - j4 = -nz, -n2 + 1,  . . . , n2, 

Now for q = 1 a complete solution for the reduced elements c ~ , ~ ,  is available. This 
is the representation of Hughes [3]. We have introduced the notations j z ,  j4 to indicate 
the relations of these indices to our definitions in (1) and (2) of (e2, fz) and (e4, f4) 
respectively. Moreover the domains of the indices given in [31 is now more simply expressed 
in terms of  the combinations ( j z k  j4). (Compare the roles of ( j M )  in (7) and (8)J Though 
it does not seem to be explicitly noted in the paper, the shff operators of [3J correspond 
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directly to the Chevalley generators (el, fi). The solutions can be written, in our notations, 

(16) 

as 

I+$' 112 c(,,&, j4 .  m4) = Ci4 + 6' m4 + T )  c(G,.,)(jz, j4) (E .  E' = f l )  

with 

q++)(h, j4) = cc--)(jz + 4, j4 + 5 )  1 

The dimension is of course, again given by (9). 

following two cases. 
But now the q-deformation is the problem. As yet solutions have been obtained for the 

(i) For n2 = 0, nl = n 

where 

This is straightforward. The factorization of m4-dependence is what one would expect. One 
has a minimal q-deformation (with q2-brackets appearing as well). 

(ii) For nl = nz = n 

1 j z + j 4 = n ,  jz=O, 5 ,  ...> n 

c(++)(jz, j 4 ,  m4) = c(--)ci~, j4, m4) = 0. (20) 
If one tries to impose for c(*,q an m4-dependence of the type one expects from the 

classical expression and the typical minimal deformation (found for nz = 0 say) one mns 
into a contradiction. The following remarkable solution has been found. One obtains, 

c(+-)(jz, j4, m4) = ([n + 112 - r j2  + m4 + 
c(-+)(h. j4, m4) = ([n + 112 - [jz - m41z)'/~ c++)(jz) 

c(+-)(jz) 
(21) 
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where 

One preserves the correct classical limit. But the m4-dependence involves a strikingly non- 
minimal q-deformation prescription. F i s ,  to our knowledge, is the first example of this 
kind.) One can express the square root of the difference of two brackets (appearing through 
m4-dependence) as a square root of products of brackets through the identity 

But now m4 appears in the denominator on the right, which is again quite unusual. 
From the definition of (e4, f4) one now obtains (with ja = n - j 2 )  

~ l j z m ? j 4 , 4 > = - ( q + q - ~ ) [ ( [ n + 1 1 ~ - L i z - m 4 1 ~ ) ~  
( [n  + 112 - [jz + m4 + I I Z ) I " ~ I ~ Z  mz jq m4 + 1 > 

fiIjzmzi4m4 >=-(q+q- ' )  (([n+ 112-[jz-m4+11z)x 
([n + 112 - [jz + ~ ~ I Z ) I W Z  mZ j 4  m4 - I > . , 

For comparison we note that for nz = 0 (jz = j4) one has 

e4ljz m2 j 4  m4 > 

f4 l . i~  mz j 4  m4 > 
= (q + q - ' ) ~ j 4  - m 4 ~ j . t  + m4 + W z ~ j z  mz j 4  m + 1 > 

=(q+q- ' ) I [ j4+m412[ j4-m4+11z]~/Z1jzmz j4m4-1  > . (N) 

Here the classical limit and the Y ( S U ( 2 ) )  structure associated with (s, 6, q**Iq) are 
evident. For nz = nl, the commutator [e.+, f41 is more complicated but, of course, has the 
same classical limit. 

Studying the bases in parallel has other interests than providing interesting exercises in 
q-deformation. We briefly mention two important aspects to be explored elsewhere. 

(a) Suitably adapting familiar continuation techniques Uq(SO(3, 2)) and Uq(SO(4, 1)) 
representations can be obtained from basis (1) and basis (2) respectively. 

(b) Under suitable contraction procedures again q-deformation of representations of 
different inhomogeneous algebras are obtained in the two cases. The contractions of basis 
(1) are discussed in [l]. Contracted representations arising from basis (2) will be presented 
elsewhere. Here possibilities of applications are particularly interesting. 

The major remaining task is the explicit construction of Uq(SO(5)) representations for 
arbitrary, admissible, (n,, nz). The elegant formalism of Fiore [4] gives the deformations 
of only the vector representations of S O ( N ) .  If one intends to cover the full range of 
invariants and indices some essential, hard problems are already encounted at the level of 
Ug(S0(5)). Overcoming them is the motivation behind our effoaS. 

The basis (1) classical representations seem (so far) to permit relatively simple (minimal) 
q-deformation. But the intricate multiplicity patterns (presented here for the first time) 
indicate the difficulties of a (even classical) general solution. The unsuitability of the 
classical Gelfand-Zetlin representations [2] for q-deformation was explained in [l]. The 
classical representations of Hughes 131 (starting point of our basis (2)) have attractive 
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properties but their q-defomation presents unexpected problems. We hope to present a 
general solution for basis (2) in a following paper. 

The domains of the indices were considered above for generic q. For q a root of 
unity the situation (concerning dimensions and the centre) changes radically. Nevertheless, 
the periodic and partially periodic irreducible representations for q a root of unity can be 
obtained from generic q using our formalism of fractioml parts [I, 517. Wis will not be 
discussed here; see section N of [l] for explanations and references. A different approach, 
containing supplementary references, is given in [6]. 
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